
Discovery of Self-Replicating Structures Using A Genetic Algorithm

Jason D. Lohn James A. Reggia
Departments of Computer Science and Electrical Engineering

A. V. Williams Bldg., University of Maryland, College Park, MD 20742
{jlohn, reggia}@cs.umd.edu

Abstract

Previous computational models of self-replication in cellular spaces have been manually designed, a very
difficult and time-consuming process. This paper introduces the use of genetic algorithms to discover
automata rules that govern emergent self-replicating processes. Given dynamically evolving automata,
identification of effective fitness functions for self-replicating structures is a difficult task, and we give
one solution to this problem. A model consisting of movable automata embedded in a cellular space is
introduced and discussed in this context. A genetic algorithm using two fitness criteria was applied to
automate rule discovery. After parameter tuning, 6 self-replicating structures consisting of 2, 3 and 4
automata were discovered over a course of 75 genetic algorithm runs. These results indicate that the
fitness functions employed are effective and that genetic algorithms can be used to successfully discover
rules for self-replicating structures.

1 Introduction

Studying computational models of self-replicating
structures is a key area in the field of Artificial Life.
Most of this work is based on cellular automata
(CA), a model first used by von Neumann to study
the complexity of self-replication. In a CA model,
space is divided into cells, each containing a finite
state machine. One state is typically designated
the “quiescent” or inactive state, and the remain-
ing states are said to be active. A self-replicating
structure is represented as a configuration of con-
tiguous active cells, each of which represents a com-
ponent of the machine. At each discrete time-step,
each automaton uses a set of rules to determine its
next state as a function of its current state and the
state of its immediate neighbor cells. Based solely
on these concurrent local interactions, an initially
specified structure goes through a sequence of steps
to construct a duplicate copy of itself (the replica
being displaced and perhaps rotated relative to the
original).

Early studies focused on understanding the com-
plexity of self-replicating structures in CA mod-
els. Researchers manually designed, presumably
through trial and error, the CA rules needed to pro-
mote self-replication. Von Neumann was the first
to report self-replicating structures in CA [17]. Us-
ing thousands of 29-state cells, his CA simulated a
machine that could construct a copy of itself from
instructions on a “tape.” Subsequent research re-
ported simpler self-replicating structures. Codd

produced a sheathed loop structure embedded in
an 8-state CA [4]. Langton made further reductions
and described an 8-state, 86-component, sheathed-
loop self-replicating structure [9]. Recently, even
simpler, non-trivial self-replicating structures have
been shown to exist [14]. In each of the above and
related studies, automata rules were manually de-
signed, and to our knowledge no research has been
reported where such rules have been generated au-
tomatically. However, in other applications using
rule-based automata models, some researchers have
turned to genetic algorithms (GAs) as a method
with which to search the space of CA rules [15, 8, 5].

The authors of the above studies reported en-
couraging results, and so we investigated whether
GAs could be used for discovering rules for emer-
gent self-replicating structures. The main barrier
to this is the determination of effective GA fitness
functions: given dynamically evolving automata,
it is not obvious how to evaluate the development
of a self-replicating structure. Using a rule-based
automata model similar to CA models, we devel-
oped novel GA fitness functions and show for the
first time that a GA could be used to discover rules
that govern self-replicating structures.

2 Effector Automata

Many previous studies involving self-replicating au-
tomata structures were based on CA models. For
our work, we developed a modified CA model

1

Administrator
J.D. Lohn, J.A. Reggia, ``Discovery of Self-Replicating Structures using a Genetic Algorithm,'' 1995 IEEE International Conference on Evolutionary Computation, Perth, 1995, pp. 678--683.

that retains desirable properties of CAs such as
strictly local interactions among simple rule-based
automata, emergent behavior, and the high degree
of parallelism. Our model is called effector au-
tomata (EA). In both CA and EA models, a cel-
lular space is defined where individual processing
units (automata), operating in parallel, receive in-
put from their local neighborhood, and using a pre-
defined rule, produce an output. In CA models,
each cell is an automaton; in EA models, each cell
is a location in space, and automata are entities
that can occupy cells. Thus, the two models dif-
fer in the kind of output produced: in CA models,
the output is an internal state transition, whereas
in EA, the output is an action to effect, such as
moving to a neighboring cell. Automata models
emphasizing actions, especially movement actions,
have been investigated previously [1, 6, 13, 16, 3].

In the EA model used here, time is dis-
cretized, and space is an isotropic and infinite two-
dimensional rectilinear grid composed of cells where
a cell may be empty or occupied by an automa-
ton a. The neighborhood template is the von Neu-
mann neighborhood, and consists of five neighbors
(including the automaton itself). Automata are di-
rectionally oriented: each distinguishes the relative
locations, but not orientations, of its neighbors as
top, right, bottom, and left. Each automaton is
represented by a symbol in {A, B, . . .} indicating its
automata-type, such that automata with the same
automata-type use identical rules. A set A of N
distinct automata-types is associated with an EA
model, for example, with N = 4, A ={A, B, C, D}.
The number of automatons of type a in a simula-
tion at a given time-step t is called the multiplicity
of a, and is denoted M ta.

The behavior of each automaton is governed by
a rule table. Each rule table entry is a condition-
action rule and has the form: CTRBL → action
where CTRBL stands for center, top, right, bot-
tom, and left neighbors. For example the rule,
B • A • C → DESTRUCT specifies that if automa-
ton B has A to its right, C to its left, and no others
(• denotes an empty cell), then it should cease to
exist at the next time-step. The actions used in
the current EA model are listed in Table 1. Au-
tomata may move (both translation and rotation
are included in the same action for convenience),
divide into two copies (again movement is included
for convenience), self-destruct, or remain inactive.
Note that the DIVIDE action enables self-replication
at the level of individual automatons, not the self-
replication of multi-automata structures, the latter
being the goal of this work. Values for the direction
parameter (shown as <dir>) are either top, right,
bottom, or left, and the rotation parameter (shown

as <rot>) can be either 0, 90, -90, or 180 degrees.
Because actions modify neighboring cells, a colli-
sion policy is specified to address the possibility of
two or more automata attempting to occupy the
same cell. Two example policies are mutual an-
nihilation which results in all automata being de-
stroyed, and the random winner policy which ran-
domly selects one automata to occupy the cell in
question. For this study, our EA model uses mu-
tual annihilation.

3 Rule Discovery using a Ge-
netic Algorithm

3.1 Genetic algorithm overview

We adapted

AA•••

•••

ACCCC action

action
action

•••

A••••

rules for
automata-type A

rules for
automata-type C

rules for
automata-type B

CTRBL

CA•••

•••

CCCCC action

action
action

•••

C••••

BA•••

•••

BCCCC action

action
action

•••

B••••

Figure 1: Chromosome represen-
tation in the GA.

a fairly stan-
dard genetic
algorithm
(GA) [7]. The
important
design param-
eters were:
population
size of 100
chromosomes,
single point
crossover and
mutation op-
erators, generational replacement with elitism,
roulette wheel selection, and linear normalization
of fitness scores. The GA was implemented in
the C++ programming language and run on a
Thinking Machines Inc. Connection Machine 5.

The artificial chromosomes in the GA are com-
prised of EA rule tables. The representation chosen
to encode an EA rule table for a three automaton-
type system is depicted in Fig. 1. A simple table
of condition-action rules is shown indexed implic-
itly by the neighborhood pattern CTRBL. All possi-
ble conditions are represented so that automata be-
havior is fully specified. A simulation consisting of
N automata-types has N(N +1)4 condition-action
rules. Crossover and mutation operators manipu-
lated the chromosomes as follows. After a random
rule table index (crossover point) was chosen, an
offspring chromosome was created by splicing to-
gether the resultant partial rule tables, one from
each parent. Mutation operated by creating a ran-
dom action for a randomly chosen rule table index.
From experimentation, we found that a crossover
rate of 0.8 and mutation rate near 0.1 yielded best

action description

MOVE <dir> <rot> move one cell in the specified direction and rotate the spec-

ified number of degrees

DIVIDE <dir> <rot> <dir> <rot> divide into two daughter automata according to the speci-

fied directions and rotations

DESTRUCT cease to exist
NULL no action

Table 1: Actions used in current EA model

results.

3.2 Chromosome trials

The testing of

(a) (b)

Figure 2: Seed structures.

each chromosome
requires that a
complete EA
simulation be ex-
ecuted. For most
EA simulations
(and CA simu-
lations), initial
conditions play
a critical role in determining system behavior.
For our experiments concerning self-replicating
structures, we started our system with small
seed structures comprised of the two and three
component automata structures shown in Fig. 2 a
and b, respectively. The objective of the GA is to
find a chromosome (rule table) that would allow
the seed structure to produce copies of itself. We
distinguish between trivial and non-trivial self-
replication by insisting that the structure actively
directs the construction of offspring, as opposed
to trivial cases where all component automata
simultaneously split to form two copies [9]. The
duration or period T of each EA simulation was
chosen to be T = 10 time-steps because given the
small size of the seed structures, it was assumed
that if any self-replicating processes emerged, it
would be during these early time-steps.

3.3 Fitness functions

Designing a fitness function to evaluate self-
replication is difficult because self-replication is a
dynamic and complex process. Two key questions
arise: what simulation data should be used and
what criteria should be applied for an effective
evaluation. Since the length of the desired self-
replication cycle is unknown, using data from a
single time-step would require knowing which time-
step replicants appeared in and assumes that repli-
cants appear all at once rather than at different
time-steps. Clearly, data from multiple time-steps

are needed so as to identify replicants as they are
produced. The choice of which time-steps to use is
important for similar reasons. Because our seed
structures were very small, we chose to use the
first 10 time-steps under the assumption that small
structures would have fast replication cycles [14].

Since the locations and orientations of offspring
from a self-replicating structure are not known be-
fore or during a simulation, comparing an evolving
structure to a predefined template of seed copies
by way of exact pattern matches fails to give par-
tial credit during the replication cycle itself, when
the structure has changed shape as it directs its
self-replication. A better approach is to compare
the adjacencies in the seed structure to the actual
adjacencies seen at each time-step, giving partial
credit for partial matches. This has the effect of
guiding each automaton into the relative positions
of the seed, hence producing a replicant. This was
the approach we used.

Evaluating the fitness of each trial EA rule table
and seed structure was accomplished by extract-
ing statistics from each of the first 10 time-steps
of an EA simulation. Using this data, two fit-
ness measures were computed and then combined
to give the overall fitness score, F , of each simu-
lation. F was designed to reward continuous self-
replication of the seed structure. Because there are
two aspects to self-replication, F was expressed as
the weighted sum of two normalized functions, a
growth measure, fgm, and a relative-position mea-
sure, frpm, as follows: F = w1fgm+w2frpm, where
w1 + w2 = 1, w1 ≥ 0, w2 ≥ 0. Growth measures
assess production of individual automatons during
the self-replication process. The growth measure
used in this study was based on production rates.
It measured to what degree each automata-type
maintains a monotonically-increasing supply of off-
spring over time. Using fgm to denote this partic-
ular growth measure, it is expressed as

fgm =
1

2TN

∑
a∈A

T∑
t=1

sa(t) (1)

where

sa(t) =



2 if M ta > M

t−1
a

1 if M ta =M
t−1
a

0 if M ta < M
t−1
a

(2)

The function sa(t) can be thought of as a scoring
function that assigns point values on the basis of
growth. For example, if there were 12 B automata
at t = 5 and 14 at t = 6, then sB(t = 6) would be
assigned 2 points. The summations in the function
fgm total the scores earned for each automata-type
over each of the T = 10 time-steps. This sum is
divided by the highest score possible to give a frac-
tion representing how well monotonic production
of automata progressed.

Given the state of an EA simulation at a partic-
ular time-step, relative-position measures (RPMs)
assess the extent to which adjacencies between
individual automata are similar to those in the
seed structure. If the seed structure exhibits self-
replication, then at certain time-steps individual
automata will be positioned (relatively) just as they
were in the seed structure, and a high RPM will
be earned. Measure frpm relies on the following
functions. The seed neighbor count function snc(a)
represents the number of occupied neighbor cells
automaton a has in the seed. For example, in
Fig. 2(b), snc(B) = 2, and snc(C) = 1. The au-
tomata match function am(t, a) represents the num-
ber of neighbors of a at time t that were the same
type and in the same relative position as in the seed.
The adjacency score function adj(t, a) is defined as:

adj(t, a) =

{
0 if M ta ≤ 1

am(t,a)
Mt
a · snc(a)

if M ta > 1

This represents to what degree, at time t, all the
automata of automata-type a have the same neigh-
bors as in the seed. When M ta ≤ 1, automata a is
extinct or is presumably part of the seed. When
M ta > 1, adj(t, a) is the ratio of am(t, a) to the
maximum possible. We then define frpm to be the
mean of adj(t, a) over all automata-types and all
time-steps:

frpm =
1

T (N + (k − 1))

∑
a∈A

T∑
t=1

waadj(t, a). (3)

where usually wa = 1 (a ∈ A) and k = 1. In seed
structures where one automata component al has
more neighbors than the others (e.g., B component
in Fig. 2(b) at t=0), it was advantageous to allow
that automata to have more influence in the fitness
calculation, and in that case we used wal = k = 2.

3.4 Self-Replicating Structures

Six self-replicating structures were discovered in
the course of 75 runs of 2000 generations each,

where each run differed in the randomly-generated
initial chromosomes. The first set of 11 experiments
that led to three discovered self-replicating struc-
tures were performed using a 2-component seed
structure with w1 = w2 = 0.5. For a 3-component
seed, it was determined empirically based on pre-
liminary runs that more emphasis was needed for
relative positioning vs. component growth, and so
we used F = 0.2fgm + 0.8frpm. One 3-component
and two 4-component structures were discovered
over the course of 64 experiments started with 3-
component seed structures. The data in Table 2
show the fitness values and the total number of self-
replication rules for each of the discovered struc-
tures at generation 2000 (structures are named
SRSxy, where x denotes the number of component
automata of the structure and y is a suffix let-
ter to make names unique). F values were in the
range 0.004–0.009 for the first generation of ran-
domly initialized rule tables, and increased to the
values shown in Table 2 at the end of the simula-
tions. Small numbers of rules were needed in each
case, a result consistent with previous cellular au-
tomaton studies of self-replication [14].

structure rules fgm frpm1 F

SRS2a 8 0.944 0.885 0.914
SRS2b 21 1.000 0.612 0.806
SRS2c 12 0.861 0.761 0.811

structure rules fgm frpm2 F

SRS3a 13 0.741 0.810 0.796
SRS4a 15 0.815 0.887 0.872
SRS4b 8 0.926 0.869 0.881

Table 2: Rule and fitness data for 2-, 3-, and 4-
component self-replicating structures.

As an example, the self-replication process dis-
covered in this fashion for SRS3a is pictured and de-
scribed in Fig. 3. It exhibits a four step replication
process with offspring rotated 90 degrees clockwise
relative to the parent. The original structure, and
two offspring, can be seen in frame t=8. The sub-
set of condition-action rules SRS3a actually used
during self-replication are shown in Fig. 4.

4 Conclusion

The self-replicating structures produced in this
fashion compare favorably in terms of simplicity
with those generated manually in the past [14].
However, more interesting is that these replicating
structures differed in unexpected ways from those
developed in previous automata models. For ex-
ample, they all were moving during replication, and
all generated debris (unused extra components). In

A.... -> DESTRUCT B...A -> DESTRUCT

A.B.. -> DIVIDE RIGHT 0 BOTTOM 270 BA..A -> MOVE BOTTOM 90

A...B -> MOVE RIGHT 270 BAA.A -> MOVE LEFT 0

A.B.B -> DIVIDE TOP 90 RIGHT 0 B..AA -> DIVIDE LEFT 270 TOP 180

BC.AA -> DIVIDE TOP 270 LEFT 180

CB... -> DIVIDE LEFT 0 RIGHT 0 B.AAA -> MOVE BOTTOM 90

C.B.. -> MOVE BOTTOM 90 B..CA -> DIVIDE LEFT 180 RIGHT 0

Figure 4: Subset of condition-action rules governing structure SRS3a (taken from the complete rule
table).

some simulations, the replicant was not the initial
seed structure but a larger structure built from it
(SRS4a and SRS4b in Table 2). Such unantici-
pated results suggest that genetic algorithms, or
other machine discovery methods, can be power-
ful tools for exploring the space of possible self-
replicating structures. Furthermore, if the basic
physical processes can be identified and represented
effectively, such an approach might even be mod-
ified and applied to discover new self-replicating
molecular structures.

References

[1] M. A. Arbib, Simple Self-Reproducing Univer-
sal Automata, Inf. and Control, 9, pp. 177–
189, 1966.

[2] A. Burks, Essays on Cellular Automata, Univ.
of Illinois Press, 1970.

[3] H. Chou, J. Reggia, R. Navarro-González, &
J. Wu, An Extended Cellular Space Method
for Simulating Autocatalytic Oligonucleotides,
Computers Chem., 18, 1, pp. 33–43, 1994.

[4] E. F. Codd, Cellular Automata, Academic
Press, 1968.

[5] J. Crutchfield & M. Mitchell, The Evolution of
Emergent Computation. Santa Fe Inst. Tech-
nical Report 94-03-012, 1994.

[6] N. S. Goel & R. L. Thompson, Movable Finite
Automata (MFA): A New Tool for Computer
Modeling of Living Systems. In [11], pp. 317–
340, 1989.

[7] D. E. Goldberg, Genetic Algorithms in
Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, Mass, 1989.

[8] D. Jefferson, R. Collins, C. Cooper, M. Dyer,
M. Flowers, R. Korf, C. Taylor, & A. Wang,
Evolution as a Theme in Artificial Life: The
Genesys/Tracker System. In [12], pp. 549–578,
1991.

[9] C. Langton, Self-Reproduction in Cellular Au-
tomata, Physica D, 10, pp. 135–144, 1984.

[10] C. Langton, Studying Artificial Life with Cel-
lular Automata, Physica D, 22, pp. 120–149,
1986.

[11] C. Langton (ed), Artificial Life, Santa Fe Inst.
Studies in the Sciences of Complexity, Vol. VI,
Addison-Wesley, 1988.

[12] C. Langton, C. Taylor, J. D. Farmer, S. Ras-
mussen (eds), Artificial Life II, Santa Fe Inst.
Studies in the Sciences of Complexity, Vol. X,
Addison-Wesley, 1991.

[13] M. Lugowski, Computational Metabolism:
Towards Biological Geometries for Comput-
ing. In [11], pp. 341–368, 1989.

[14] J. Reggia, S. Armentrout, H. H. Chou, &
Y. Peng, Simple Systems That Exhibit Self-
Directed Replication, Science, 259, pp. 1282–
1288, Feb., 1993.

[15] F. C. Richards, T. P. Meyer, & N. H. Packard,
Extracting Cellular Automaton Rules Directly
from Experimental Data, Physica D, 45, pp.
189–202, 1990.

[16] I. Stephenson & R. Taylor, Creatures, A Sim-
ulation Environment for Autonomous Behav-
ior. Technical Report ASEG.92.16, University
of York (York, England, Y01 5DD), 1992.

[17] J. von Neumann Theory of Self-Reproducing
Automata, A. Burks (ed), University of Illinois
Press, 1966.

t=0 t=1 t=2

t=3 t=4 t=5

t=6 t=7 t=8

Figure 3: Development of 3-component self-
replicating structure SRS3a. The original seed
structure is highlighted, as well as the offspring,
only after they appear in a clearly isolated posi-
tion. The seed structure moves to the right at
each time-step while producing offspring rotated
90◦ clockwise relative to the parent. The B com-
ponent of the first offspring is produced (by divi-
sion) at t=1, and the A and C components at t=2.
The precursor of the first offspring is seen at t=3
and its C component rotates into position at t=4
as it continues to move downward. From t=5–7 it
produces its own offspring and at t=7 it is seen iso-
lated, and hence highlighted for the first time. The
original seed structure produces its second offspring
during t=4–7, which again moves downward. The
original seed structure, its first two offspring, and
an upside-down precursor offspring can be seen at
t=8. Eventually, a diamond-shaped colony forms
and expands indefinitely.

